PROGRAMA DE PÓS-GRADUAÇÃO EM MODELAGEM MATEMÁTICA E COMPUTACIONAL (PPGMMC)

UNIVERSIDADE FEDERAL DA PARAÍBA

Teléfono/Extensión
No Informado

Disertaciónes/Tesis


Clique aqui para acessar os arquivos diretamente da Biblioteca Digital de Teses e Dissertações da UFPB

2024
Descripción
  • FRANKLIN GONÇALVES DE ABRANTES
  • MATHEMATICAL MODELING APPLIED TO CONTROL THE INVASION OF LIONFISH (Pterois volitans)
  • Asesor : ANA PAULA PINTADO WYSE
  • Fecha: 30-ago-2024
  • Hora: 15:00
  • Mostrar Resumen
  • In this study we intend to discuss the possible impacts caused by the lionfish, a marine fish of the Pterois volitans species, which over recent years has been re- sponsible for causing damage to several native marine species, due to its high repro- duction capacity, and for presenting a high predation rate. In this context, initially two mathematical models will be presented, one with density-dependent capture, and the other with constant capture, where situations will be demonstrated and compared to predict a possible scenario in which capture is greater than the growth of the species. In practical terms, a completely efficient capture method is not yet known, however there are studies that aim to develop a drone capable of capturing lionfish; The proposal is that this equipment will be able to capture 95% of lionfish in each delimited area, having the ability to distinguish lionfish from other species that may be present in the same location. Next, another study will be presented that describes the growth dynamics of the species considering the introduction of a variety of lionfish with YY chromosomes, called supermales, resulting from modified lionfish with inverted sex containing two Y chromosomes, with the objective interfer- ing with the reproductive process of the species Pterois volitans. Scenarios obtained by numerical simulations will illustrate the dynamics of the models presented.
  • MATEUS ALVES DE OLIVEIRA
  • EVALUATING POLYNOMES AS NEW BASE FUNCTIONS FOR MOLECULAR QUANTUM-CHEMICAL CALCULATIONS
  • Asesor : GERD BRUNO DA ROCHA
  • Fecha: 31-jul-2024
  • Hora: 08:30
  • Mostrar Resumen
  • The Schrödinger equation, although theoretically capable of calculating electronic quantum states in chemical systems, faces limitations when dealing with systems with more than one electron. Hartree-Fock (HF) theory offers an approximate approach to overcome these limitations by transforming the problem of solving the coupled Schrödinger equation for N electrons, into N independent problems for 1 electron subject to the Coulomb nuclear potential, and to a mean field due to electronic interactions, with the adaptation of solutions to the Pauli exclusion principle. The implementation of HF theory requires the use of basis functions such as Gaussian Type Orbitals (GTOs). The analytical form of GTOs requires the calculation of exponentials, making the evaluation of parameters such as electron density computationally expensive. This work proposes an innovation by replacing GTOs with Polynomial Type Orbitals (PTOs), aiming to significantly accelerate quantum-chemical calculations. The comparison between the energies obtained with PTOs and GTOs in the Helium atom and the H2 molecule will be carried out following the variational theorem, which guides the search for a solution closer to the true one. The objective is to contribute to the effectiveness and efficiency of calculations in quantum chemistry and, potentially, positively influencing various computational applications in this field. To date, three PTOS have been tested, one of which demonstrates that its use is completely viable.
  • BRADSON TIBERIO LUNA CAMELO
  • AUCTION THEORY IN PARAÍBA’S PUBLIC PROCUREMENT - A TRANSACTION COSTS ESTIMATION USING MACHINE LEARNING
  • Fecha: 19-jul-2024
  • Hora: 14:00
  • Mostrar Resumen
  • This master’s thesis aims to fill a specific gap in the literature by investigating transaction costs in public procurement, using mathematical models and machine learning techniques. The personal and practical motivation for this research arises from the need to improve efficiency and transparency in public tenders, particularly in the state of Paraíba, where the optimization of public resources is of utmost importance. The main objective of this study is to develop and apply a mathematical model to analyze public procurements and use machine learning techniques to predict the transaction costs that impact public pricing. The research is divided into two main parts. The first part is dedicated to developing a mathematical model (game-theoretic), adapting classic auctions to the most common public procurement modalities, such as Competitive Bidding and Auction. This section mathematically explores the impact of participants’ strategies and behaviors on auction outcomes, focusing on the presence of transaction costs, including entry prices. In the second part, machine learning techniques are applied to predict transaction costs in public procurements, using data such as invoices from public entities in the state of Paraíba, as well as economic, geographical, social, and accounting information. The methods include the use of Random Forest and LASSO to create predictive models, aiming to estimate procurement prices more accurately. The research results indicate that the Random Forest model presented a coefficient of determination (R2) of 0,97, explaining about 97% of the variability in transaction costs, with a root mean squared error (RMSE) of 0,14 standard deviations of normalized prices. The analysis revealed that factors such as Average Payment Time and the timeframe for fulfilling judicial debts (precatórios) are crucial determinants of transaction costs. These results show that it is possible to predict transaction costs in public procurements with high precision using advanced machine learning techniques. In conclusion, the practical implications of the research are highlighted, such as the possibility of implementing predictive models to improve the management of public procurements, promoting greater efficiency and transparency in the use of public resources. The interdisciplinary approach adopted, which combines statistics, economics, mathematics, computer science, and public administration, reflects the complexity and relevance of the topic, offering practical and theoretical tools to enhance public procurement processes.
  • VALDEMI NUNES COSTA
  • Log-linear INGARCH models with mixed Poisson innovations
  • Fecha: 12-jul-2024
  • Hora: 14:00
  • Mostrar Resumen
  • In this work, we propose a general framework for modeling and inference of count time series data through a log-linear INGARCH model with innovations belonging to the class of mixed Poisson distributions, where the involved latent variable belongs to the exponential family. Thus, we introduce a broad class of time series models, with specific cases explored based on the inverse Gaussian and negative binomial Poisson distributions. For parameter estimation, we developed an iterative maximum likelihood method using an EM algorithm, with its performance in finite samples evaluated through simulation studies. The proposed model will be illustrated with applications to real data to demonstrate its utility.
  • ISAAC FERREIRA DE LIMA
  • A COMPARISON OF INFLATIONED DISTRIBUTIONS FOR MODELING DOUBLE LIMITED DATA
  • Fecha: 31-may-2024
  • Hora: 09:30
  • Mostrar Resumen
  • Inflated distributions are a type of probability distributions that are widely used for cases where the data contains a certain excess of zeros and/or ones. The re- searcher who will study or apply this type of distribution may encounter different data characteristics, and there is no "ready-made recipe" that indicates the best distribution for each type of data. In this work, we propose to compare the In- flated Beta, Inflated Unitary Gamma, Inflated Kumaraswamy, and Inflated Simplex distributions, with the aim of identifying cases/situations where it is possible to determine which of these distributions is better suited to model the inflated data.
  • FRANCISCO ALLYSON ANDRADE VIEIRA
  • Aspects of Acquired Immunity to Malaria and its Mathematical Modeling
  • Asesor : ANA PAULA PINTADO WYSE
  • Fecha: 29-feb-2024
  • Hora: 16:00
  • Mostrar Resumen
  • Malaria is an infectious disease that presents its incidence of cases in regions with tropical and subtropical climates due to the adequacy of temperature and rainfall that provides adaptation to the environment, making it conducive to the development of the transmitting mosquito. Regarding the duration of the infection caused by the malaria vector, this period may vary depending on the individual's exposure to the protozoan. This work seeks to present aspects of acquired immunity to malaria and its mathematical modeling through epidemiological models. Considering the contributions of such models in providing essential information to control and combat this disease.
  • JOSE PAES DA COSTA NETO
  • EVALUATION AND QUALITY CONTROL IN INDUSTRY USING COMPUTER VISION
  • Asesor : MARCELO RODRIGO PORTELA FERREIRA
  • Fecha: 27-feb-2024
  • Hora: 10:00
  • Mostrar Resumen
  • This study addresses the global shift in potato consumption as a food source, highlighting the transition from fresh potatoes to processed food products with higher added value. Potatoes are widely cultivated in over 110 countries and represent one of the most essential staples in the human diet (Bradshaw and Ramsay, 2005). They are processed into various products such as boiled potatoes, pre-fried potato strips, french fries, among others (Pedreschi, 2012). The success in producing potato-based products like potato chips and pre-fried potatoes depends on factors such as solids content, reducing sugar levels, and frying temperature (Lisinska and Leszczynski, 1989). Furthermore, the color of potato chips plays a critical role in consumer acceptance and is linked to the formation of acrylamide, a substance of concern for human health (Rosen and Hellena¨s, 2002; Mottram and Wedzicha, 2002; Stadler et al., 2002; Pedreschi et al., 2005). This research explores color assessment methods, including the use of colorimeters and digital image processing systems, to measure the quality of potato chips (Segnini et al., 1999; Pedreschi et al., 2004a). It also emphasizes the significance of maintaining potato quality during processing to ensure the production of high-quality products (Marique et al., 2005). In the context of the potato chip industry, this study examines the application of machine learning and computer vision techniques to analyze the quality attributes of potato chips, with the aim of finding ways to reduce acrylamide formation in potato chips without compromising their sensory characteristics (Pedreschi, 2012).
2023
Descripción
  • NAIARA PEREIRA TAVARES
  • MATHEMATICAL MODELING OF THE EFFECTS OF VACCINATION AGAINST COVID-19 IN BRAZIL
  • Fecha: 31-ago-2023
  • Hora: 16:00
  • Mostrar Resumen
  • The coronavirus pandemic or COVID-19 (Coronavirus Disease) was declared in the beginning of 2020 changing completely the way we interact with each other. The scenery demanded that we practice social distancing, having the least direct contact possible among the human being. The disease was something new to the world and consequently to science and this prompted the relentless search for an effective vaccine to contain the spread of the virus. Therefore many studies was accomplished about the global situation, among them, the epidemiologic modeling that would explain the dynamic of COVID-19 and its complexities, for that reason, the mathematical modeling has been and continues to be present to describe real situations and provide important information to assist in the management of diseases. Utilizing this , the present study aims to mathematically model the dynamics of COVID-19, taking into account vaccinated individuals, in order to analyze the disease’s behavior as people receive the vaccine. A modification was accomplished in the SIR model, where we included the compartments of individuals vaccinated with one dose, two doses, and three doses of vaccine; we take into account the influence of some parameters such as transmission rate, recovery rate, reinfection rate, and vaccination rate. The dynamic of the population’s behavior was represented by numerical simulations, utilizing the software Maple, for different scenarios of vaccination.
  • DAVID ELOI DOS SANTOS BITENCOURT
  • INFLUENCE OF THE RADIUS, THE DISTANCE AND THE STOCHASTIC MOVEMENT IN THE PURSUIT PROBLEM
  • Fecha: 30-ago-2023
  • Hora: 14:00
  • Mostrar Resumen
  • This work investigates the influence of the radius, the distance and the stochastic movement in the multidimensional pursuit problem. Using Monte Carlo simulation, a point in deterministic motion and an object in random motion take steps that are discrete or sufficiently small to simulate the continuous behavior. We utilize tools from the statistical inference to analyze the findings relative to the percentage of captures, random variable. These findings allow us to indicate that there is a directly proportional relationship between the percentage of captures and the radius, as well as the probabilistic distribution of the steps. Furthermore the increase of the initial distance between the point and the object can alter the behavior of the random variable
  • JOHN WILLIAMS FERREIRA DE SOUZA
  • ANALYSIS OF GEOMETRICALLY NONLINEAR RETICULATED STRUCTURES USING THE CORROTATIONAL FORMULATION OF FINITE ELEMENTS
  • Fecha: 30-ago-2023
  • Hora: 10:00
  • Mostrar Resumen
  • There are several works dedicated to the development of model formulations of lattice structures that take into account the displaced position of the structure, as well as the different nonlinear behaviors inherent to these structures. The tendency to use more slender and stronger structures makes the subject of stability analysis of fundamental importance. This work aims to propose a static analysis and presents of structural models by finite elements, studied to carry out static studies of models structured by finite linear elements with non-linearity by finite elements. To do so, it is necessary to study the concepts of structural analysis, tracing the trajectories of designing the structures, the characteristics of the design of the finite element method, the concepts of non-linearity chosen and also the study of the programming language. The designed algorithms were tested in different situations, in order to control the designation used. Therefore, since analytical behavior numerical applications with trusses and plane frames in nonlinear cases established in the literature.
  • JOAQUIM DE SOUZA CAMPOS
  • CORRECTIONS OF LIKELIHOOD RATIO STATISTICS IN BETA PRIME REGRESSION MODELS
  • Fecha: 29-ago-2023
  • Hora: 14:00
  • Mostrar Resumen
  • This dissertation deals with Skovgaard’s correction for the likelihood ratio statistic applied to the reparametrized beta prime regression model in terms of mean and precision by BOURGUIGNON et al. (2018). The likelihood ratio test is one of the most commonly used methods for testing hypotheses about parameters in a regression model due to its simplicity. The Beta Prime regression model is convenient for modeling asymmetric data and serves as an alternative to Generalized Linear Models (GLM) when dealing with skewed data. However, the test can be significantly distorted when the sample size is not large enough. Additionally, it is essential to note that the chi-squared distribution may not be a good approximation for the exact null distribution of the likelihood ratio statistic in samples of small or moderate sizes. To improve this approximation, the usual strategy is to replace the likelihood ratio statistic with its corrected versions. Monte Carlo simulations were conducted to evaluate the performance of the corrected statistic. Finally, two applications to real data are presented.
  • RAFAEL OLIVEIRA DO NASCIMENTO
  • SHAPE AND ROBUSTNESS ANALYSIS: EXISTING METHODS AND SOME PROPOSITIONS
  • Fecha: 29-ago-2023
  • Hora: 10:30
  • Mostrar Resumen
  • Statistical shape analysis is the study of variations in shape, size and their covariations. Although most applications concern biology, statistical shape analysis has become a powerful tool, with diverse applications in the fields of archaeology, paleontology, geography, and medicine. Procrustes analysis is one of the most used methods in the statistical analysis of shapes and plays an important role in measuring, comparing and estimating the average shape of objects. However, this technique is based on the least squares method, which is severely affected when the data presents aberrant observations (outliers). In this work we propose a method for procrustes analysis based on robust regression models existing in the literature.
  • IRINEU BARBOSA DA SILVA NETO
  • REPARAMETRIBUTION OF THE INFLATIONED POISSON DISTRIBUTION IN ZERO: ESTIMATION AND APPLICATION
  • Fecha: 29-ago-2023
  • Hora: 08:00
  • Mostrar Resumen
  • The present work addresses the estimation of the mean of the Zero-Inflated Poisson (ZIP) distribution using the methods of Maximum Likelihood Estimation (MLE) and Moments. A new parameterization for the Zero-Inflated Poisson, named ZIPM, was proposed, introducing the mean (μ) and inflation (δ) parameters. The main objective was to investigate the estimation effectiveness for the mean of the Zero-Inflated Poisson distribution and the suitability of the proposed new parameterization. The results demonstrated that both MLE and the method of moments produced satisfactory estimates for the mean of the ZIPM distribution. No significant differences were found between the methods in terms of estimated mean, mean squared error (MSE), and relative bias. Furthermore, the new ZIPM parameterization showed promise, allowing for refined control of the mean and inflation. However, it is important to note that certain specification errors can occur when using ZIPM and estimation methods. Model adequacy and the validity of estimates depend on meeting underlying statistical assumptions and the data adhering to the Poisson distribution. In conclusion, this work contributes to the field of statistics by proposing the ZIPM parameterization and exploring estimation methods for the mean of the ZIP distribution. The encouraging results indicate the utility of the new parameterization and provide valuable insights for researchers dealing with zero-inflated data. Nevertheless, caution is necessary when interpreting results, considering potential model limitations and associated specification errors
  • RICARDO NEVES TAVARES
  • Advances for the two-fluid percolation model in Z^2
  • Fecha: 25-ago-2023
  • Hora: 16:30
  • Mostrar Resumen
  • Percolation is a physical problem that arose from the study of the phenomenon of fluid transport through a porous medium, consisting of pores and microscopic channels through which the fluid passes. The channels and pores that make up the system can be open or closed to the passage of the fluid, representing, for example, the way in which a liquid or gas infiltrates through a rock. Our objective in this work is to present an algorithm that solves the link percolation problem in the set Z^2.
  • ANA NERY NASCIMENTO SILVA
  • OPTIMIZATION AND ANALYSIS OF THE LOCATION OF HEALTH UNITS OF THE FAMILY FROM THE MUNICIPALITY OF JOÃO PESSOA
  • Fecha: 25-ago-2023
  • Hora: 14:30
  • Mostrar Resumen
  • This research aims to analyze the service network of the USFs in the city of João Pessoa - PB in two aspects: first, looking at the health care network in the city of João Pessoa - PB as a graph and analyzing its centrality measures. And then apply the Maximum Coverage Location Problem in order to verify if the location of the USFs is the most adequate in order to maximize the coverage area of the current public health network, with the aim of optimizing/covering the care provided to the users, ie from the population of João Pessoa - PB.
  • MARIA EDUARDA DA CRUZ JUSTINO
  • DIAGNOSTIC MEASURES IN PRIME BETA REGRESSION MODELS
  • Fecha: 23-ago-2023
  • Hora: 14:00
  • Mostrar Resumen
  • In the context of models for continuous positive response variable, the regression model beta prime, proposed by Bourguignon et al. (2021), is attractive for modeling positive data asymmetrical. In the validation stage of a regression model, one of the diagnostic techniques most commonly used is residual analysis. For this, it is important to use residues with properties known and who performed well. In this work, we carry out a detailed study of the residuals in the BP regression model. We propose weighted and standardized weighted residuals (ESPINHEIRA et al., 2008) and standardized Pearson residuals (MCCULLAGH; NELDER, 1989) for such model and compared their performances, via Monte Carlo simulation, together with the performances of the quantile and Pearson residues used by Bourguignon et al. (2021), in addition, we evaluated some prediction and goodness-of-fit measures as model selection criteria in BP regression. In this perspective, we propose the predictions coefficient , based on the PRESS statistic, and we evaluate the measured behavior and pseudos determination coefficients through studies of Monte Carlo simulations, considering the correct and incorrect specification in different scenarios of the BP regression model. Real data applications are customized to illustrate the waste performance and proposed measures.
  • CARLOS LISBOA DUARTE
  • Asymmetrical pendulums coupled through a free support
  • Fecha: 28-jul-2023
  • Hora: 14:00
  • Mostrar Resumen
  • The main objective of this work is to analyze, computationally, the process of obtaining the analytical expressions resulting from the modeling of a nonlinear dynamic system comprised of two pendulums, coupled to a mobile support that can move freely on a plane. We consider a situation in which the pendulums have different masses and lengths, that is, they are asymmetrical, this makes the process of obtaining the necessary equations for the study of this system difficult. Thus, we will use the SymPy module (Python for symbolic computation) to assist in the process of deducing the analytical expressions of the modeling of the proposed problem. Then, we will study the phenomenon of energy transfer that can occur between the normal modes of oscillation of the system, trying to determine their stability and the situations in which energy transfer can occur. From the methodological point of view, the research is the result of bibliographic reviews based on studies on theoretical physics and mathematics. It is also worth mentioning that the results observed during the of the study were obtained from numerical simulations using the Python programming language and specialized modules, such as NumPy and SymPy.
  • JOSÉ WENES PEREIRA LIMA
  • EVALUATION OF THE ENEM WRITING NOTE IN THE STATE OF CEARÁ VIA INFLATIONED BETA REGRESSION MODEL
  • Fecha: 31-may-2023
  • Hora: 14:00
  • Mostrar Resumen
  • The National High School Exam (ENEM) is currently the most important instrument for assessing basic secondary education in Brazil. Furthermore, this assessment tool heavily relies on the scores obtained by participants as a predominant criterion for accessing public and private universities in the country. The exam objectively evaluates participants in four areas: humanities and their technologies, natural sciences and their technologies, mathematics and their technologies, and languages and codes and their technologies. In addition to these, the exam also includes a writing test, which is the only non-objective part of the exam. The score on the writing testis crucial for a candidate’s approval in various university courses, as it goes beyond mere writing skills and assesses the student’s ability to analyze a topic, construct sound arguments, provide evidence for their ideas, and propose solutions. These skills are relevant in an academic environment where conducting research, debating ideas, and participating in discussions are necessary. This dissertation aims to identify the factors that influence the scores on the writing test for participants who took the ENEM in 2019 in the state of Ceará, Brazil. To achieve this, the inflated beta regression model was used, given that the response variable exhibits asymmetry and takes values in the interval [0, 1]. The data was obtained through the INEP portal, specifically the page related to the ENEM. The number of observed participants was 74,943 from public schools and 5,279 from private schools. Through the analysis of the proposed models, it was found that both in public and private schools,the scores on the objective tests influence the scores on the writing test for students. Additionally, the scores on humanities, languages and codes, and mathematics and their technologies strongly influence the probability of participants achieving a score of 1000 score on the writing test.
2022
Descripción
  • RAPHAEL DANTAS PINHO
  • Storage Methods of Sparse Matrices for Real-Time Simulation of Electric Grids
  • Fecha: 24-nov-2022
  • Hora: 08:30
  • Mostrar Resumen
  • Real-time computer simulation of electrical networks has become one of the most important analysis tools for the operation of these networks through the design of their control and protection systems. To perform the real-time simulation of the electrical network, it is necessary to model the generation and load equipment and connect them to the passive network model, composed of transmission lines and transformers. In addition, it is necessary to solve the system of equations resulting from this modeling, which is generally of a high order due to the dimensions of the electrical networks, in order to obtain the results that will provide the analysis. Invariably, the matrices that describe the behavior of the passive network are sparse and in this work, emphasis is given to the storage techniques of these matrices and their respective forms of solving the system of equations, comparing the computational performance of these techniques, that is, storage time processing, use of computational memory and amount of necessary mathematical operations, aiming at the optimization of performance for the viability of the simulation in real time.
  • ANDERSON KERLLY RODRIGUES DE SOUSA
  • *
  • Asesor : ANTONIO JOSE BONESS DOS SANTOS
  • Fecha: 28-oct-2022
  • Hora: 14:00
  • Mostrar Resumen
  • *
  • VICTOR MATHEUS DA CUNHA SANTOS
  • DYNAMICS AND SPREADING OF MOSQUITOES GENETICALLY MODIFIED VIA MUTAGENIC CHAIN REACTION
  • Fecha: 30-jul-2022
  • Hora: 10:30
  • Mostrar Resumen
  • A mathematical model was developed to evaluate the use of Genetically Modified Mosquitoes (GMMs) as a strategy to control the Malaria epidemic. The mosquitoes responsible for transmitting malaria (vectors) have been genetically modified so that the probability of transmission of the disease-causing parasite when biting a human being is reduced compared to wild-type vectors. Our model represents the population dynamics of the introduction of a transgenic strain of malaria vectors of the Anopheles Gambiae species, considering the Mutagenic chain reaction (MCR) technique, which is the genomic editing process whose principle is the generation of "autocatalytic" mutations, always resulting in edited allele homozygosity. Three different types of agents were included in the model: wild-type, homozygous and heterozygous transgenic mosquitoes.
  • RAQUEL PRISCILA IBIAPINO
  • Static analysis of bar structures using the finite element method
  • Asesor : ANTONIO JOSE BONESS DOS SANTOS
  • Fecha: 30-jul-2022
  • Hora: 08:00
  • Mostrar Resumen
  • In this work we present a model for one-dimensional flexible structures in three-dimensional space, based on Timoshenko's theory, in a regime of small displacements and subject to arbitrary loads. We present a variational formulation of Galerkin and mixed kinematics, being their discretizations by the finite element method. We show for the very slender structure, the kinematic formulation presents difficulties of approximation, that is, a locking of the numerical solution. We present a mixed formulation that does not present this type of dependence thickness parameter, with stable and convergent solutions. Some numerical experiments are performed and their results are discussed.
  • EDIVAGNER BATISTA FERREIRA
  • Probabilistic Measure and Probability Density in Chaotic Systems
  • Fecha: 28-jul-2022
  • Hora: 14:00
  • Mostrar Resumen
  • The study of dynamical systems that exhibit chaotic behavior provides applications in several areas of knowledge such as predictions in engineering, physics, biology, among others. Therefore, studying such systems is important not only from the intrinsic point of view of the search to understand phenomena. Among the various properties that these systems exhibit, one in particular is the characteristic of preserving some measure under the action of dynamics, such as the density of points along the transformation domain. This work aims to verify the existence of this measure through numerical simulations. We will use the Frobenius Perron Operator to verify that this density is invariant in some maps, which are discrete-time systems and which provide the simplest way to study chaotic behavior, such as the logistic map, Bernoulli shift and the tent map. The methodology used will be the construction of histograms to capture the distribution of points generated by the map and compare with the theoretical results present in the literature.
  • RAUL RENNER MARTINS DE SA
  • Inflated Prime Beta Control Chart
  • Fecha: 25-jul-2022
  • Hora: 09:00
  • Mostrar Resumen
  • The prime beta distribution is very flexible for modeling data that are measured on a continuous scale and restricted to positive reals, since their density takes on quite different shapes. When the data have excess zeros, an absolutely continuous distribution is no longer adequate and therefore it is necessary to consider a distribution inflated to zero. The proposal of new techniques for controlling and improving the quality of products has grown a lot in recent times. However, there are few control charts that consider inflated distributions. The objective of this work is to propose a control chart based on the inflated beta prime distribution to monitor quality characteristics in support of positive reals including zero. The proposed graphs will be approached considering individual measures (n=1) and samples with n>1, where the average of the quality characteristic will be monitored.
  • KATY SYLVIA BATISTA CASTRO
  • KERNELIZED AND ADAPTIVE DISTANCES FOR CLUSTERING INTERVAL TIME SERIES
  • Fecha: 30-mar-2022
  • Hora: 14:00
  • Mostrar Resumen
  • The task of clustering is part of everyday life and human nature. The literature that deals with clustering provides techniques, metrics and algorithms to accomplish this task. In particular, the clustering of observed data over time and in the form of intervals represents a challenge, with new methods being proposed for this purpose. The advantage of adaptive distances is that they assign different weights to the variables of clusters, and an algorithm that succeeds in adapting to this can bring results far superior to algorithms that treat all variables in the same way, with the same level of importance. Moreover, kernelization makes it possible to work with data in a new space, different from the original space, where the groups will present a better separation. The objective of this work is to consider new distances for the K-Means method in the clustering of interval time series. We will use adaptive distances and distances calculated through the kernelization of the metric and the feature space. To validate the proposed algorithms, we performed a study with time series generated from the parameters of Space-Time Autoregressive (STAR) models, using Monte Carlo simulations as well as real data. The comparison will take place through external and internal indices. The results obtained in the simulations demonstrate that the proposed algorithms performed better than the existing methods. The application to real data considered cryptocurrency series and traditional indices such as gold, oil, stock exchanges, among others. The results point to insights that can be used for future work in machine learning and economics.
2021
Descripción
  • ANDERSON MORAIS DE SOUZA
  • BOOLEAN CHAOS: IN SEARCH OF SYNCHRONIZATION
  • Fecha: 16-dic-2021
  • Hora: 09:00
  • Mostrar Resumen
  • The study of dynamical systems makes it possible to describe the characteristics of a infinity of phenomena, in particular, the study of nonlinear dynamical systems, which have stood out in the mathematical modeling scenario for presenting a rich behavior in dynamic informations and with several particularities. It is in this context that this work employs mathematical and computational tools based on concepts of analysis of nonlinear systems that are applied in the study of Lorenz system. Based on the analysis of phase plans, phase spaces, numerical simulations and the behaviors that such a system presents, we will analyze the dynamics of Autonomous Boolean Networks, in which the future state of the network will be determined by the history of switching events, previous interactions and delays along the links. As well as we will analyze the study of the non-ideal behavior of logic gates, the rejection of short pulses and an analysis of the memory effect called "degradation" play a fundamental role in understanding the dynamics and chaos presented by the network under discussion. Therefore, the knowledge of the factors that can generate chaotic behavior in Autonomous Boolean Networks with time delays will allow the study of synchronization between Autonomous Boolean Networks.
  • RAFAELA SOUZA MORAIS
  • Exploring the parameter space for the RM1 semiempirical method by using nonlinear optimization
  • Fecha: 15-dic-2021
  • Hora: 15:00
  • Mostrar Resumen
  • Molecular modeling allows us to calculate properties of molecular compounds, being used mainly in the discovery of new drugs or in the improvement of existing prototypes. There are several ways to generate these models, the ab initio methods being the most accurate, but they are extremely slow computationally. As an alternative, semiempirical methods were proposed, which use approximations to obtain a much more computationally efficient result, but with a accuracy that varies a lot, depending on the approach and on the chosen or adjusted parameters. One such method is RM1 (Recife Model 1), created in 2006 as a reparameterization of AM1 (Austin Model 1), which was created in 1985 and was very successful. RM1 achieved good results, but it is important to assess whether the chosen parameterization was the best possible. In this work, the parameter space for the RM1 method was explored, using a variation of the nonlinear optimization algorithm DFP starting from different points, evaluating whether it is possible to offer a substantial improvement in its accuracy only with a reparameterization, or if it is necessary to modify the structure of the method in order to achieve this objective. The starting points were parameterizations found by a previous work, using genetic algorithms, which offered slightly better results than RM1. The optimization of this work did not find better points than the genetic algorithm, perhaps because the cost function used in the minimization was not adequate. To improve the results, it would be necessary to adapt the cost function, which is possible with a procedure presented as a suggestion for a future work.
  • EMERSON CHARLES DO NASCIMENTO MARREIROS
  • COMPUTATIONAL CALCULATION OF THE BORDER OF THE VORONOI DIAGRAM IN THE PLANE WITH TWO SITE AND ONE CIRCULAR OBSTACLE.
  • Fecha: 10-dic-2021
  • Hora: 09:00
  • Mostrar Resumen
  • The objective of the work is to numerically calculate the boundary of the Voronoi diagram for two generating points on the y axis and the center of the circular obstacle on the x axis. The task is to build a graph structure to solve the set point problem when the set is the region of points on the plane that are closest to one of the sites.
  • JHONATAN BRUNNO FERREIRA DA SILVA LINO
  • Methods for optimizing water distribution networks
  • Fecha: 29-oct-2021
  • Hora: 10:00
  • Mostrar Resumen
  • This work aims to present a computational model for the optimization of water distribution networks, to minimize its cost. The model will be developed in Python language through the scipy.optimize package with the minimize routine. The network will be created through the Epanet program. Furthermore, the results presented by Lenhsnet (network optimization module of the Epanet program) will be obtained. Simulations will be carried out in the model, varying the optimization method used, verifying which one presents better results in relation to convergence and processing time.
  • MELQUISEDEC ANSELMO DA COSTA AZEVÊDO
  • FORECAST AND ANALYSIS OF THE ICMS IN PARAÍBA
  • Fecha: 29-jul-2021
  • Hora: 13:00
  • Mostrar Resumen
  • The search to anticipate the facts is quite common throughout the ages, considering something as likely based on clues, be they scientic or popular beliefs. In the economic context, forecasts are necessary to plan actions in advance and conclude on the main interventions and their likely consequences, because if the budget is overestimated, will lead to over-spending, which may lead to a decit or contingencing, which is the temporary reduction of expenditure to reach the scal target and if resources are underestimated, which may hinder urgent and/or extremely important actions. In this way the present dissertation presents a modeling methodology, forecasting and analysing the collection of the Transaction Tax on the Movement of Goods and on the Provision of Interstate and Inter-municipal Transport and Communication Services of the State of Paraíba (ICMS-PB)for representing more than 80% of the State's tax revenue. Data were collected from January 1997 to April 2021, which is truncated into distinct dates generating four series to verify if the dynamics of the series vary. So it is using, for the four series, the Holt-Winters exponential smoothing algorithms with additive and multiplicative seasonality, and Box-Jenkins models with the integrated seasonal auto-regressive models of moving averages (SARIMA) and SARIMAX with the variable dummy referent with the dummy variable referring to the COVID-19 pandemic, trend and seasonality as regressive variables. Comparing them between themselves and with the real values of the ICMS of Paraíba. Finally, considering the mean quadratic error and total error obtained through the relationship between collections and forecasts, the models that generated the best forecasts for each series were selected, displaying the graph with the real values, the forecasts and the 95% condence interval, verifyng the circumstances that the models best t to predict the ICMS of Paraíba.
  • NIVALDO ANTÔNIO DE SOUZA SILVA
  • FORECAST OF WATER CONSUMPTION AT THE TREATMENT STATION GRAVATA WATER - PB
  • Fecha: 27-jul-2021
  • Hora: 13:00
  • Mostrar Resumen
  • The present thesis aims to predict the consumption in the Water Treatment Plant of Gravatá-PB. Through this research, we approached the water supply system, with its components, the water treatment plant, and the water supply system in Campina Grande. To predict water consumption, we use as a basis the main concepts related to time series, namely, the exponential smoothing algorithm and the Box-Jenkins models. These models show the integrated autoregressive models of ARIMA and ARIMAX moving averages. In ARIMAX we use independents variables. The independent variables used in ARIMAX were the estimate of the trend, the dummy variable, which represents the consumption of water in the period of the COVID-19 pandemic, and the temperature of the Campina Grande region. Finally, we performed comparisons with the results obtained from the predictions and verified that the model ARIMAX(1,1,4) with the independent variable obtained better predictive result.
  • ADRIANA RIBEIRO MOURA
  • MODEL SELECTION CRITERIA: A COMPARATIVE STUDY
  • Fecha: 23-jul-2021
  • Hora: 16:00
  • Mostrar Resumen
  • In classical inference, families of probability distributions are imposed as possible candidates for modeling the phenomenon of interest and it is desired to decide among distributions belonging to these families, which one best ts the data through an adjustment adequacy criterion . The idea, in general, comes from a compound hypothesis testing problem, in which a random sample is considered $X1,X2,...,Xn$ of a population with distribution function continuous cumulative $F_X$. The objective is to test the null hypothesis $H0 : F_X = G$ against the alternative hypothesis $H1 : F_X \neq G$, in that $G$ is an imposed cumulative distribution function and thus known and $F_X$ is the actual distribution of the data which is generally unknown. Considering the families of generalized distributions denoted by $G_c^sup$ and $G_c^inf$ proposed by Tablada (2017), with parameter $c > 0$, where $G$ (baseline) is any probability distribution, in this work we propose a fit adequacy criterion based on the properties of these distributions. Thus, accepting the null hypothesis, in the criterion, will imply that $G_c^sup$ is equivalent to $G_c^inf$ to model the specified data. In turn, the equivalence of these two distributions will induce that the data can be modeled by $G$. To compare the performance of the new criterion against the criteria: Akaike in- formation criterion (AIC), corrected Akaike information criterion (AICc), Bayesian information criterion (BIC), Hannan-Quinn information criterion (HQIC) and the modified Crámer-Von Mises criteria (W∗) and Anderson-Darling (A∗) we performed diferent simulation scenarios. Also for comparison purposes, we illustrate its applicability using real datasets. As a complement to the investigation carried out throughout this work, we present the most important results on multiple linear regression and perform sim- ulations in order to compare the performance of the proposed criterion together with the following criteria: Akaike's information criterion (AIC), corrected Akaike information criterion (AICc), Bayesian information criterion (BIC), Hannan-Quinn information criterion (HQIC), also in multiple linear regression models. Finally, we use the new criterion along with the Akaike information criteria (AIC), Bayesian information criteria (BIC) and the adjusted coeficient of determination ($R^2$) and we check its performance applied to a real dataset.
  • GEDEÃO DO NASCIMENTO CORPES
  • BETA PRIME DISTRIBUTION INFLATION
  • Fecha: 14-jul-2021
  • Hora: 14:00
  • Mostrar Resumen
  • Probability distributions, whether discrete or continuous, can find barriers when we talk about data that contains "excess zeros". So that these distributions can measure such data, you create mixed distributions called inflated distributions. How this inflation takes place will depend on its support set. In this research we propose the construction of the beta prime distribution inflated in zero (BPIZ) from the reparametrization presented in BOURGUIGNON et al. (2018). We also determined maximum likelihood estimators and intervals confidence for the BPIZ model. We numerically evaluate the estimators and the confidence intervals, where we check its efficiency. Finally, we performed application to also verify its efficiency in relation to real data.
  • EMILIA GONÇALVES DE LIMA NETA
  • Improvement of the likelihood ratio test based on the profiled likelihood function
  • Fecha: 12-feb-2021
  • Hora: 15:00
  • Mostrar Resumen
  • In Statistics, hypothesis tests are used to make inferences of the parameters of a given probabilistic model. However, it is often convenient to perform inferential study only for a subset of parameters, which are called parameters of interest, and the others, nuisance parameters. Inferences of parameters of interest can be made based on profiled likelihood function. However, making inferences based on this function can lead to inaccurate results when the number of nuisance parameters is large comparing to the sample size. Also, the profiled likelihood function is not genuine. Thus, some basic properties of the likelihood function may not be valid. To mitigate these problems, Barndorf-Nielsen (1983) and Severini (1998) proposed adjusted versions of the profiled likelihood function. It is known from the literature that the likelihood ratio statistic, under the null hypothesis, has an asymptotic chi-square distribution. Therefore, for small or moderate samples, the asymptotic distribution is not a good approximation for the exact null distribution. To improve inferences, Sousa (2020) proposed a method for improving the likelihood ratio test, which consists of correcting the tail of the asymptotic null distribution through the chi-square inf. The main aim of this work is to compare the performance of tests based on the likelihood ratio statistic (considering the profile likelihood function and the modified versions) with the improvement method proposed by Sousa (2020) in infinite samples. Tests corrected by the bootstrap resampling technique will also be included in the comparison. Specifically, this comparison will be made by applying the diferent approaches to the Weighted Lindley and Exponentialized Weibull distributions. For that, Monte Carlo simulations will be performed, considering different scenarios. Finally, we performed four numerical examples based on real data sets.
  • ALEXANDRE GOMES SOUZA
  • Volatility of returns from renewable energy indices and uncertainty shocks in the USA and Europe
  • Fecha: 29-ene-2021
  • Hora: 14:00
  • Mostrar Resumen
  • The goal of this work is to estimate the volatility of returns and shocks of uncertainties on the indices related to the performance of the renewable energy market in the USA and Europe. In this sense, an analysis of the risks associated with the European Renewable Energy and Renewable Energy Generation indexes can reveal how they affect the sector's performance. First, structural break tests will be estimated on the return trajectories and check if the analysis should be divided between regimes. To estimate volatility, conditional heteroscedastic models proposed in the literature will be used, particularly the Dynamic conditional correlation multivariate GARCH (DCC-MGARCH). The data were chosen based on the Standard \& Poor's 500, WilderHill, Arca Tech 100, West Texas Intermediate and Morgan Stanley Capital International, Thomson Reuters/ CoreCommodity and U.S. Dollar indices. In addition to the estimates of all parameters, quasi-correlation matrices, quasi covariance, and uncertainties shocks over the studied indices will be obtained through impulse response functions obtained by a VAR model.
  • JEFFERSON BEZERRA DOS SANTOS
  • HYBRID ENERGY BALANCE MODEL BASED ON STOCHASTIC DUAL DYNAMIC PROGRAMMING
  • Fecha: 29-ene-2021
  • Hora: 14:00
  • Mostrar Resumen
  • With the increase in demand for electricity, great technological advances are indispensable for efficient growth. In Brazil, hydroelectric is the main source of energy generation. However, due to the disproportionate increase in demand and the scarcity of rainfall, it has been necessary to activate thermoelectric plants to supply the demand, with the main disadvantages of environmental damage being greater than other sources such as hydroelectric plants. Glimpsing the need to perform an adequate management of the energy dispatch, in order to minimize the generation costs and a reduction of the environmental impact, in this work a study based on Dual Stochastic Dynamic Programming for hydrothermal systems with a complementary wind generation system was proposed. . To simulate the random behavior of the wind, Brownian motion is used, assuming that the wind speed over time is a continuous Gaussian process. In this work, the construction and analysis of the hydrothermal-wind model was performed using variations in productivity for various planning scenarios. For the numerical analysis of the results, real load curve data and a wind curve sample were used. In the end, the research results identified two dispatch configurations that show that complementary wind generation and variation in the productivity index brought benefits to the generation of the system and reduced expected cost.
  • WILTER DA SILVA DIAS
  • Clusterwise Segmentation Model with Hybrid Prototypes
  • Fecha: 28-ene-2021
  • Hora: 14:30
  • Mostrar Resumen
  • This dissertation presents a methodology that combines prediction and grouping techniques called the Clusterwise Segmentation Model with Hybrid Prototypes (MoSCH), which aims to segment the data into clusters so that each cluster is represented by a predictive model, such as, for example, a regression model or machine learning algorithm (prototype), among a list of predefined methods. The choice of the best prototype for each cluster is intended to minimize an objective function. In addition to the implementation of the MoSCH method estimation algorithm, we consider different allocation techniques for new observations in order to assess the predictive power of the algorithm. A proof of convergence is presented, as well as the application of the proposed method in synthetic data and in real databases. A new allocation method based on KNN, called allocation with KNN of the combined clusters, is proposed, presenting interesting results. In the experiment with synthetic data, the MoSCH algorithm is compared with another algorithm in 6 different scenarios, with an excellent performance. In the validation of the MoSCH algorithm with real data, the proposed method presents a relevant performance when compared to 3 other algorithms, as well as the evaluation of 5 different allocation methods.
  • CARLOS AUGUSTO DOS SANTOS
  • Measles Dynamics in Partially Immunized Populations
  • Fecha: 22-ene-2021
  • Hora: 09:00
  • Mostrar Resumen
  • Basic concepts related to measles and mainly its form of contagion will be introduced, as well as mathematical models that govern its dynamics considering vaccination effects. The following will present concepts from the Theory of Optimal Control that will be used to formulate and solve a problem that aims to minimize the density of infected people.
2020
Descripción
  • DIONARTE DANTAS DE ARAUJO
  • Selection of portfolios from the microstructure of the Brazilian capital market using machine learning
  • Fecha: 30-dic-2020
  • Hora: 14:00
  • Mostrar Resumen
  • The present work seeks to find better results in investment portfolios built by the model proposed by Markowitz using, using Machine Learning (ML) techniques. Machine learning models are increasingly gaining prominence in the field of economics and finance. Through the comparative analysis of the results found in each model, this work elucidates and the difference between the performance of the Markowitz model, the classic model in machine learning Decision Tree (DT) and one of the modern models of ML o Extreme Gradient Boosting (XGBoost). For the machine learning models, the historical data of quotations for each asset found on the B3 portal were used, together with the XGBoost and DT algorithms. For the execution of the Markowitz model, it was used as a series of returns on assets, derived from the closing values ​​of each asset in the studied time frame, together with the IntroCompFinR library and a script in Language R. The results of the comparative analysis, for the period from 03/06/2019 to 01/08/2019, evolution that the Markowitz model presented better result in risk vs return found for the studied portfolios. 36 portfolios were analyzed during this period (12 portfolios with 10 assets for each model), where the Markowitz portfolios obtained an average yield higher than the others.
  • RAFAEL PEREIRA DE LIMA
  • A STUDY OF THE VORONOI DIAGRAM FOR TWO SPECIFIC GENERATING POINTS WITH A CIRCULAR OBSTACLE
  • Fecha: 29-dic-2020
  • Hora: 14:00
  • Mostrar Resumen
  • In this work, we study concepts related to the Voronoi diagram, an important geometric data structure for solving proximity problems. Its construction takes place by comparing points arranged in a certain space and specific points, called the sites or generating points. Points that are the same distance from two neighboring sites make up the border of the diagram. There are algorithms that allow to build this diagram when polygonal obstacles are inserted between the sites. However, these algorithms are not useful when these obstacles have other formats. In this sense, we propose a computational algorithm to determine the boundary of the Voronoi diagram when there is a circular obstacle between two generating points arranged in the flat space R 2 .
  • PRISCILA SANTANA DA PAZ
  • Discrete Maps for the Dynamics of Mode-Locked Optical-Fiber Laser
  • Asesor : HUGO LEONARDO DAVI DE SOUZA CAVALCANTE
  • Fecha: 11-dic-2020
  • Hora: 14:00
  • Mostrar Resumen
  • Mode-lock fiber lasers exhibit rich and complex dynamics, including bifurcations, periodic and chaotic behaviors. Such lasers are important because they produce ultra-short laser pulses which interact with matter very differently than continuous wave lasers, and because these ultra-short pulses can generate ultra-fast dynamical responses. There are many models for the dynamics of such systems, but some of those models are excessively complicated and difficult to implement, because many different phenomena occur and are subject to distinct descriptions and different dynamics. Usually, these dynamics are described in terms of equations for the propagation of the electromagnetic field along the fiber, either as an amplitude envelope or as a Fourier amplitude. The resulting equation is a differential equation in one spatial dimension and a undetermined number of oscillation modes. In this dissertation, a discrete-time mathematical model is elaborated, in opposition to the models using differential equations, which takes into account the optical elements and the way these affect the polarization state of the light. This model is used to construct discrete maps capable of incorporating the effects of polarization rotation, optical Kerr effect, and the transmission of a polarizing cube, to describe the laser behavior and attempt to produce bifurcation diagrams qualitatively similar to the ones observed in experimental systems.
  • RODRIGO NÓBREGA ROCHA XAVIER
  • PYCRYSTALSCD: A SOFTWARE TO OBTAIN THE SUPRAMOLECULAR CLUSTER DEMARCATION AND ITS CONTACT AREAS IN ORGANIC CRYSTALS.
  • Fecha: 08-dic-2020
  • Hora: 14:00
  • Mostrar Resumen
  • The supramolecular cluster, according to an approach proposed by the NUQUIMHE research group, is composed by a central molecule (M1) and the MN molecules around it, being the smallest portion of a crystal structure capable of providing all the topological and energetic information that characterize the intermolecular interactions involved throughout the entire crystal lattice. Correct identification of the supramolecular cluster is the starting point to understand the formation of a certain crystalline phase, which has extensive applicability. With that intent, the NUQUIMHE group follows a standard procedure that uses several existent programs to identify and separate the candidate molecules to compose the supramolecular cluster. The procedure involves visual inspection and several steps for building the supramolecular cluster and obtaining contact area data. This results in a very slow and fault-prone procedure. In this work, the creation of the PyCrystalSCD software is reported, which is responsible for automating the most laborious part of that approach, which is to identify the supramolecular cluster and to obtain the contact area between the involved molecules, using 3D Voronoi diagrams.
  • ANTÔNIO RUBENS DE SOUSA
  • QUI-SQUARE INF DISTRIBUTION: A NEW APPROACH TO IMPROVE THE ENDLESS REASON TEST
  • Fecha: 29-may-2020
  • Hora: 17:30
  • Mostrar Resumen
  • The main objective of the statistic is to make inference in a population or phenomenon from a subset of its data, called a sample. One way to make inference is to perform hypothesis testing. Roughly speaking, we can say that it is from a sample of the population that we will establish a decision rule according to which we will reject or accept the proposed hypothesis, called the null hypothesis. A general procedure that produces reasonable tests is the Likelihood Ratio (TRV) Test. To apply the TRV, we need to know the true distribution of the likelihood ratio statistics λ * (x), which is generally not easy to obtain. However, it is known in the literature that the RV = −2 log (λ * (x)) statistic follows an approximate chi-square distribution when the test is based on a large sample size. However, the use of the chi-square distribution as an approximation to the true distribution of the RV statistic can lead to inaccurate inferences when the sample size is small. The aim of this research is to perfect the TRV when the test is based on a small or moderate sample. For this, we make use of new families of distributions, denoted sup and inf. Using in particular the properties of the inf family of distributions, we propose a new approach to TRV, in which we use the chi-square distribution inf as a corrective distribution of the chi-square distribution to obtain the quantile 1 - γ that determines the critical test region. Finally, this work creates the computational package LikRatioTest, written in the R language, with the objective of doing Monte Carlo simulations, imposing several scenarios, to observe the rejection rates of the null hypothesis both based on the chi-square quantile and in the quantile of the chi-square inf, in order to validate our proposal. This package is open source and is available on GitHub for installation on R.
  • MANUEL ESTEBAN RAMIREZ CARRILLO
  • APPLICATION OF THE FUNDAMENTAL SOLUTIONS METHOD IN REVERSE GEOMETRIC PROBLEMS
  • Fecha: 27-mar-2020
  • Hora: 10:00
  • Mostrar Resumen
  • This work aims to explore some applications of the method of fundamental solutions (MFS) in solving some types of inverse problems. Initially, the reconstructions of a subdomain for the Laplace and modified Helmhotz equations are studied. Finally, two ways of using the method of fundamental solutions for the reconstruction of the wet area for an electrical impedance tomography problem are presented.
  • MANOEL MESSIAS FRUTUOSO DOS SANTOS
  • MATHEMATICAL AND COMPUTATIONAL STUDY OF ONCOLOGICAL HYPERTERMIA
  • Fecha: 20-mar-2020
  • Hora: 14:00
  • Mostrar Resumen
  • Oncological hyperthermia has stood out among the methods to fight cancer. This therapy consists of artificially heating the body's tissue through electromagnetic waves, concentrating the heat in cancer cells. The achieved increase in temperature in Organs affected organs promotes greater sensitivity in the respective tumor cells, thus optimizing the expected benefits of chemotherapy, radiotherapy and surgery. In addition to being a painless, non-invasive procedure and without the need for hospitalization, hyperthermia does not exceed the body's thermal tolerance, thus preserving healthy tissues adjacent to tumor cells. In the problem of electromagnetic hyperthermia, electromagnetic waves are generated by electrodes (antennas) adjustable and spatially distributed. These antennas produce a source in the Helmholtz equation, whose solution appears as a heat source in the Bioheat equation. The aim is to find the best positioning of the antennas, so that only cancer cells are affected by the increase in temperature, thus resulting in an optimization problem.
  • EWERTON VERISSIMO DA SILVA
  • MATHEMATICAL MODELING OF THE USE OF WOLBACHIA BACTERIA AS A MEANS OF CONTROL OF AEDY AEGYPTI MOSQUITOES POPULATION
  • Fecha: 20-mar-2020
  • Hora: 10:00
  • Mostrar Resumen
  • Due to the difficulty of combating the population of Aedes aegypti, which has a great capacity for reproduction, dengue has become a worldwide public health problem. Despite the efforts of the government, which employs control methods, especially chemical and mechanical, the initiatives are still insufficient. In an attempt to reduce dengue cases, an alternative method consists of using biological control of the transmitting vector by means of the bacteria Wolbachia. In general, this technique interacts with the population of wild mosquitoes with mosquitoes contaminated with the bacterium, in order to shorten the insect's longevity and alter its fecundity, considering that, under certain conditions, there is the possibility of the entire population of mosquitoes wild animals contract the bacteria. Therefore, the general objective of the present work will be to analyze the dynamics and spread of Wolbachia in natural populations of the mosquito Aedes aegypti. For this, mathematical modeling will be used in order to describe the interaction between infected and non-infected populations.
2019
Descripción
  • WILSON SALUSTIANO JUNIOR
  • Métodos Numéricos para Previsão em Sistemas Dinâmicos
  • Fecha: 13-dic-2019
  • Hora: 14:00
  • Visualizar Disertación/Tesis   Mostrar Resumen
  • Muitos comportamentos naturais e artificiais podem ser reproduzidos por sistemas dinâmicos descritos por equações diferenciais, cujas soluções formam séries temporais. Portanto, um problema importante é a determinação de qual o modelo matemático capaz de descrever o comportamento de um dado sistema dinâmico, assim como determinar os valores dos parâmetros que regem este modelo. A solução desse problema nos permite obter informações sobre a evolução do sistema e a determinação de seus possíveis estados futuros. Estas informações são especialmente importantes em sistemas de difícil previsão, como é o caso de sistemas complexos ou não-lineares, que possuem grande sensibilidade a condições iniciais. Para tentar reproduzir a dinâmica de sistemas cujas equações não são conhecidas, a principio estudaremos o sistema de Lorenz. Temos como objetivo mostrar que o conhecimento de séries temporais de dados oriundos de sistemas dinâmicos podem ser usadas para recuperar a dinâmica que origina o comportamento observado. Em seguida, usando esta dinâmica recuperada, abordaremos o problema da previsão do estado futuro. Desenvolvemos uma técnica de inteligência artificial utilizando funções polinomiais para calcular as velocidades de evolução das variáveis de estado do sistema, com o objetivo de recuperar sua dinâmica, para em seguida realizar a previsão. Veremos que o algoritmo é capaz de se adaptar ao sistema, com parâmetros flexíveis, extraídos a partir dos dados coletados em observações pregressas, mesmo quando estes dados estão contaminados por ruído observacional. Esperamos que o nosso método seja útil além de ciência básica, em várias aplicações, tais como fazer previsões de sistemas físicos, biológicos, financeiros, geográficos, meteorológicos, etc.
  • ROMULO DA SILVA LIMA
  • O MÉTODO DAS SOLUÇÕES FUNDAMENTAIS APLICADO À RECONSTRUÇÃO DE FONTES CONCENTRADAS PARA PROBLEMAS ELÍPTICOS
  • Fecha: 14-mar-2019
  • Hora: 09:00
  • Visualizar Disertación/Tesis   Mostrar Resumen
  • O problema inverso estudado neste trabalho consiste em reconstruir uma fonte concentrada escrita por uma combinacao linear finita de cargas puntuais do tipo delta de Dirac, tendo como base informacoes observadas na fronteira do dominio. Como exemplo de aplicacoes, podemos citar: identificacao de hipocentros e epicentros de terremotos, conhecendo a priori os seus efeitos sobre a superficie da Terra; deteccao de monopolos e dipolos em magnetencefalografia e eletroencefalografia, auxiliando no diagnostico de disturbios cerebrais como tumores ou acidente vascular cerebral (AVC), por exemplo. Nesta dissertacao, o problema inverso da reconstrucao de fontes concentradas associado a operadores elipticos, como o operador de Laplace ou de Helmholtz, foi resolvido atraves de um problema de otimizacao. Em particular, o problema inverso foi reformulado como um problema de minimizacao de um funcional de forma a ser minimizado com relacao a um conjunto de fontes admissiveis. O Metodo das Solucoes Fundamentais (MSF) foi utilizado para resolver os problemas diretos auxiliares provenientes da reformulacao do problema inverso, tendo em vista todas as vantagens deste metodo numerico sem malha, em comparacao com tecnicas de discretizacao do dominio, como o Metodo das Diferencas Finitas (MDF) e o Metodo dos Elementos Finitos (MEF), por exemplo. Alem disso, o MSF foi utilizado para representar as cargas puntuais que compoe a fonte concentrada, eliminando o ruido que e caracteristico quando se usa discretizacao do dominio no algoritmo de reconstrucao para a representacao de fontes concentradas. Com os resultados numericos obtidos, foi possivel comprovar a eficiencia, eficacia e robustez do algoritmo de reconstrucao proposto, mesmo considerando-se dados contaminados por ruidos.
  • RITA DE CASSIA JERONIMO DA SILVA
  • DIAGRAMA DE VORONOI PARA DOIS PONTOS COM UM OBSTÁCULO CIRCULAR
  • Fecha: 18-feb-2019
  • Hora: 10:00
  • Visualizar Disertación/Tesis   Mostrar Resumen
  • Neste trabalho, inicialmente apresentamos uma estrutura de dados geometrica de grande importancia na solucao de problemas de proximidade denominada diagrama de Voronoi. Atraves de um conjunto de pontos geradores no plano, analisamos como se da a sua construcao sem a presenca de obstaculos entre estes pontos, apresentando suas propriedades e algumas caracteristicas importantes. Em seguida, analisamos quais as consequencias causadas em tal estrutura quando inserimos obstaculos entre seus pontos geradores. Primeiramente, observamos esta situacao considerando obstaculos poligonais. E finalizamos determinando a fronteira deste diagrama quando consideramos dois pontos geradores e um obstaculo circular.
  • MARLOS ANTONIO PINHEIRO ROLIM
  • MODELAGEM BIDIMENSIONAL DA DINÂMICA E ESPALHAMENTO DE MOSQUITOS SELVAGENS E TRANSGÊNICOS
  • Fecha: 08-feb-2019
  • Hora: 11:00
  • Visualizar Disertación/Tesis   Mostrar Resumen
  • Neste trabalho, apresentamos a modelagem da dinamica da interacao entre populacoes de mosquitos selvagens e transgenicos e seu espalhamento em um dominio espacial bidimensional. Para isso, as subpopulacoes sao classificadas de acordo com a sua zigosidade: selvagens, transgenicos heterozigotos e transgenicos homozigotos, que interagem por meio de acasalamento e competicao por recursos. As linhagens obtidas do acasalamento entre essas tres variedades estao de acordo com a genetica classica Mendeliana. Este modelo esta sendo representado por um sistema de equacoes diferenciais parciais do tipo reacao-difusao, onde o termo de reacao e fortemente nao-linear. Para resolve-lo numericamente, desacoplamos os operadores de difusao e reacao do sistema, atraves de uma tecnica de decomposicao de operadores sequencial, aplicamos o metodo dos elementos finitos na resolucao do sistema difusivo (exclusivamente espacial), e o metodo de Runge-Kutta de quarta ordem ao sistema associado a reacao. Algumas simulacoes numericas sao apresentadas mostrando a potencialidade da aplicacao do modelo.
2018
Descripción
  • ALINE COSTA DE MENESES
  • Transmissão de Malária baseada na Dinâmica da Interação entre Mosquitos Selvagens e Transgênicos usando a Genética Mendeliana e a Técnica de Reação em Cadeia Mutagênica
  • Fecha: 13-dic-2018
  • Hora: 10:00
  • Visualizar Disertación/Tesis   Mostrar Resumen
  • Recentes avancos na manipulacao genetica viabilizaram a obtencao de mosquitos refratarios a doencas, de forma que o transgene que bloqueia o ciclo do protozoario no mosquito se propague atraves dos descendentes. O estudo com os mosquitos transgenicos e uma alternativa promissora para a reducao da malaria, apesar disso, disseminar genes que controlem uma populacao de mosquitos selvagens tem sido um desafio ate os dias de hoje. Experiencias e avancos tecnologicos com a enzima CRISPR/cas9 atraves da tecnica de Reacao em Cadeia Mutagenica (MCR) tem trazido mudancas para este cenario. Nesse contexto, a busca por modelos matematicos que descrevam a dinamica da interacao entre populacoes de mosquitos que vivem em uma mesma area geografica tem sido viabilizada atraves de simulacoes e experimentos, verificando o comportamento das populacoes de mosquitos selvagens e transgenicos. Dessa forma, o objetivo deste trabalho e propor um modelo matematico diferencial nao-linear para descrever a dinamica de interacao dos mosquitos atraves do modelo θ-logistico, com base nas diferencas entre a genetica classica mendeliana e a tecnica MCR. Busca-se assim, resultados mais precisos da implementacao do gene mutante, visando a melhor metodologia para diminuir os indices de malaria com esta tecnica. Neste modelo sera utilizado o metodo Runge-Kutta de quarta ordem para a resolucao numerica aproximada das equacoes diferenciais utilizadas no modelo adotado. Os cenarios obtidos das simulacoes para diferentes valores de θ e f ilustram a pertinencia desse tipo de sistema para a modelagem proposta, fornecendo diretrizes sobre as diferencas entre o modelo genetico mendeliano e a tecnica MCR quanto a interacao entre as tres populacoes de mosquitos.
  • EVILASIO MACEDO FELIX
  • AGRUPAMENTO FUZZY NO ESPAÇO DE CARACTERÍSTICAS BASEADO NO KERNEL DE MAHALANOBIS COM DISTÂNCIAS QUADRÁTICAS ADAPTATIVAS
  • Fecha: 11-dic-2018
  • Hora: 10:00
  • Visualizar Disertación/Tesis   Mostrar Resumen
  • Nesta dissertacao de mestrado, propomos metodos de agrupamento fuzzy no espaco de caracteristicas baseado no kernel de Mahalanobis com distancias quadraticas adaptativas, rotulados respectivamente por (MK-FCM-PFCV-FS, MK-FCM-PDFCV-FS, MK-FCM-FCV-FS e MK-FCM-DFCV-FS). Este estudo e uma extensao do trabalho desenvolvido em Silva, A. S. (2018). Os metodos propostos sao baseados no kernel de Mahalanobis a partir de distancias quadraticas adaptativas definidas por matrizes de covariancias simetricas positivas definidas. Estas matrizes de covariancias podem ser diagonais ou completas, comuns a todos os grupos ou diferentes para cada grupo, determinadas sob o enfoque de agrupamento no espaco de caracteristicas, que realiza um mapeamento de cada observacao por meio de uma funcao nao-linear e entao obtem os centroides dos grupos no espaco de recursos. Esta tecnica permite que ao passarmos para um espaco de mais alta dimensao (espaco de caracteristicas), um conjunto de observacoes no espaco de entrada nao-linearmente separavel torna-se separavel linearmente no espaco de caracteristicas. Os algoritmos propostos foram comparados com os diversos metodos de agrupamentos tradicionais conhecidos na literatura, como o fuzzy k-medias e suas versoes baseadas no kernel Gaussiano, como tambem os metodos desenvolvido por Silva, A. S. (2018). A avaliacao se deu atraves de experimentos numericos com dados simulados e reais. Os resultados corroboram a superioridade dos metodos propostos.
  • OLIVIA SOBREIRA GOMES
  • Animação e Otimização
  • Fecha: 31-ago-2018
  • Hora: 10:00
  • Visualizar Disertación/Tesis   Mostrar Resumen
  • O texto aborda um problema de perseguicao, comum em animacoes, do ponto de vista deterministico e do ponto de vista aleatorio. Uma abordagem que mescla otimizacao, obstaculos e modelos probabilisticos.
  • JAELSON DOS SANTOS OLIVEIRA
  • Modelo de Percolação Bidimensional com Dependência Local.
  • Fecha: 27-jul-2018
  • Hora: 10:00
  • Visualizar Disertación/Tesis   Mostrar Resumen
  • Neste trabalho se faz uma abordagem de como grafos planares podem estar ligados ao problema da percolacao. Portanto, estabelece-se uma relacao entre certos modelos fisicos com a simulacao computacional.
  • JOSÉ ALUISIO SILVA
  • Estudo da Minimização da Massa de Treliças Tridimensionais
  • Fecha: 20-jul-2018
  • Hora: 10:00
  • Visualizar Disertación/Tesis   Mostrar Resumen
  • As trelicas sao modelos estruturais simplificados de barras. A minimizacao das massas dessas trelicas e geralmente empregado em projetos de engenharia onde se busca por estruturas leves e resistentes. Neste trabalho estuda-se o problema de minimizacao da massa de trelicas tridimensionais, com restricoes de tensao. Para definir este problema, se apresentam os modelos matematicos de otimizacao e de estruturas trelicadas. E descrito o modelo de elementos finitos para trelicas e o modelo programacao nao linear para o problema de otimizacao. Para resolver o problema de otimizacao proposto emprega-se o Feasible Arc Interior Point Algorithm (FAIPA). Sao apresentados resultados numericos obtidos com o FAIPA para diferentes tipos de estruturas tridimensionais. As estruturas otimas calculadas com esta tecnica mostram a utilidade do problema resolvido neste trabalho: as estruturas otimas empregam menos material (sao mais baratas) e sao viaveis, pois verificam as restricoes de tensao de cada barra.
  • JOÃO PAULO CARAU DE OLIVEIRA
  • Aplicação de Eliminação Iterada de Estratégias Dominadas a Modelos de Competição entre Dois Jogadores.
  • Fecha: 18-jun-2018
  • Hora: 14:00
  • Visualizar Disertación/Tesis   Mostrar Resumen
  • Apresenta-se, nesta dissertacao o estudo e aplicacao de uma ferramenta retirada da Teoria dos Jogos chamada de eliminacao iterada de estrategias ou acoes estritamente dominadas (IESD). Utilizando a linguagem de programacao Python, este trabalho se concentra na construcao e aplicacao de um algoritmo baseado nesta ferramenta para resolucao de uma situacao hipotetica de conflito entre duas naves espaciais. A analise ocorre da perspectiva de um dos jogadores e diversos modelos de distribuicoes para qualificar como e escolhido um ganhador sao adotados e simulados. Para ganhar um dos jogadores deve realizar uma serie de escolhas de trajetorias para ser ganhador, e uma escolha errada significa sua destruicao. No geral a utilizacao de (IESD) se mostrou mais vantajosa que a escolha aleatoria.
  • CAMILA RAVENA DE OLIVEIRA
  • Agrupamento subtrativo baseado em kernel para dados simbólicos de natureza intervalar
  • Fecha: 23-may-2018
  • Hora: 09:00
  • Visualizar Disertación/Tesis   Mostrar Resumen
  • Tornou-se primordial a tarefa de sumarizar enormes conjuntos de dados em termos de seus conceitos subjacentes, afim de extrair deles novos conceitos. Uma alternativa para isso e representar os dados atraves de listas, intervalos, distribuicoes e afins. Estas representacoes sao exemplos de um tipo de dado denominado dado simbolico, que tem sido tratado principalmente pela Analise de Dados Simbolicos (ADS) - Symbolic Data Analysis (SDA). Metodos de agrupamento sao tecnicas de mineracao de dados multivariados que a partir de informacoes das variaveis de cada caso tem por objetivo agrupar automaticamente por aprendizado nao supervisionado os casos da base de dados em grupos. Yager e Filev (1994) desenvolveram o metodo de agrupamento de montanha, que estima os centroides dos grupos construindo e modicando a funcao de montanha em um espaco de grade e Chiu (1994) desenvolveu o metodo de agrupamento subtrativo, que calcula a funcao nos pontos de dados em vez de pontos de grade. Diversos metodos tem sido propostos, capazes de lidar com estrutura de dados complexa, dentre eles, metodos de agrupamento baseados em kernel. A essencia dos metodos baseados em kernel e a realizacao de uma mapeamento nao-linear arbitrario do espaco de entrada original para um espaco de alta dimensao. Neste trabalho sera proposto um metodo subtrativo baseado em kernel para dados simbolicos do tipo do intervalo, que e uma variante do metodo de agrupamento subtrativo baseado em kernel proposto por Kim et al. (2005).
  • JOSEVANDRO BARROS NASCIMENTO
  • Jogos Digitais e Probabilidades: Uma Possibilidade de Ensino Interdisciplinar.
  • Fecha: 09-may-2018
  • Hora: 12:30
  • Visualizar Disertación/Tesis   Mostrar Resumen
  • A presente pesquisa de mestrado fundamenta-se em pesquisas de educacao Matematica e Ciencias e modelagem matematica. Tinha como objetivo geral desenvolver jogos pedagogicos digitais para o ensino de probabilidade em uma perspectiva interdisciplinar com alunos do Ensino fundamental.
  • ALISSON DOS SANTOS SILVA
  • Agrupamento fuzzy baseado no kernel de Mahalanobis com distâncias quadráticas adaptativas
  • Fecha: 04-abr-2018
  • Hora: 09:00
  • Visualizar Disertación/Tesis   Mostrar Resumen
  • Nesta dissertacao de mestrado, propomos metodos de agrupamentos fuzzy baseado no Kernel de Mahalanobis com distancias quadraticas adaptativas definidas por matrizes de covariancias diagonais comuns a todos os grupos ou diferentes para cada grupo e matrizes de covariancia completas comuns a todos os grupos ou diferentes para cada grupo. Este kernel foi construido a partir de uma distancia quadratica adaptativa definida por uma matriz simetrica positiva-definida que e modificada a cada iteracao do algoritmo que tambem sera proposto. Os algoritmos propostos serao comparados com os diversos metodos de agrupamentos tradicionais conhecidos na literatura como o k-medias, o fuzzy k-medias e suas versoes baseadas no Kernel Gaussiano. A avaliacao sera feita atraves de experimentos numericos com dados simulados e reais.
  • CREYTON BORGES ROCHA
  • ESTUDO DA MAXIMIZAÇÃO DA FREQUÊNCIA DE TRELIÇAS COM MASSA NÃO ESTRUTURAL
  • Fecha: 28-feb-2018
  • Hora: 11:00
  • Visualizar Disertación/Tesis   Mostrar Resumen
  • Neste trabalho se estuda a relacao entre a minima frequencia e a massa nao estrutural de estruturas mecanicas. Sao apresentados resultados teoricos desta relacao. Adicionalmente, se define o problema de maximizacao da menor frequencia de uma estrutura com restricoes de volume e complacencia e sua relacao com o problema de minimo volume com restricoes de frequencia e complacencia. O problema de maximizacao da frequencia e um problema de programacao semidefinida nao linear de dificil resolucao numerica. Por isto, para formular estas relacoes foram necessarias definicoes e resultados teoricos da programacao semidefinida. Com o objetivo para obter resultados numericos no estudo destas relacoes e para resolver os problemas de otimizacao, emprega-se o modelo de elementos finitos para estruturas trelicadas e emprega-se um algoritmo de pontos interiores para programacao nao linear semidefinida denominado FAIPA-SDP. Esta tecnica foi aplicada para os testes numericos apresentados, podendo-se comprovar todas as questoes teoricas e a solucao dos problemas de otimizacao apresentados neste trabalho.
  • ANDRE FRANCISCO COELHO CASTRO
  • Otimização de estruturas através de uma técnica de programação semidefinida de grande porte.
  • Fecha: 28-feb-2018
  • Hora: 10:00
  • Visualizar Disertación/Tesis   Mostrar Resumen
  • As tecnicas de programacao semidefinida, que permitem lidar com problemas de otimizacao sujeitos a restricoes matriciais, sao muito eficientes quando se trata de aplicacoes em otimizacao estrutural. Utilizando-se destas tecnicas, o presente trabalho apresenta um novo algoritmo numerico, pertencente a familia FDIPA-SDP-NL, capaz de resolver problemas estruturais de grande porte. Seu diferencial esta na formulacao de um novo sistema de Newton, cuja funcao e encontrar uma direcao que seja ao mesmo tempo de descida e viavel, com dimensoes bem reduzidas em relacao ao das versoes anteriores, o que facilita o seu armazenamento em memoria e torna possivel sua aplicacao em problemas que requerem um grande numero de elementos na discretizacao da estrutura. Com a finalidade de mostrar o desempenho deste algoritmo, apresentam-se resultados numericos de aplicacoes das tecnicas desenvolvidas em um problema classico de otimizacao estrutural: a maximizacao da frequencia natural de estruturas sujeito ao equilibrio de condicoes e restricoes de volume e energia de deformacao (complacencia).
  • JAIRO CARLOS DE OLIVEIRA QUINTANS
  • Metaestabilidade na cruz
  • Fecha: 23-feb-2018
  • Hora: 14:00
  • Visualizar Disertación/Tesis   Mostrar Resumen
  • O trabalho descreve certo modelo da mecanica estatistica do ponto de vista computacional. Tal modelo e descrito por uma cadeia de Markov. O objetivo e de simular tal modelo um certo numero de vezes com o intuito de estimar as probabilidades dos possiveis estados que a cadeia pode convergir.
  • VANLEX GOMES GALDINO
  • Técnicas para estimação de expoentes de Lyapunov em sistemas dinâmicos não-lineares
  • Fecha: 16-ene-2018
  • Hora: 14:00
  • Visualizar Disertación/Tesis   Mostrar Resumen
  • A estabilidade de trajetorias no espaco de fase de um sistema dinamico pode ser caracterizada com o uso dos expoentes caracteristicos de Lyapunov. Em situacoes simples, estes expoentes correspondem aos autovalores da equacao de movimento linearizada. Entretanto, para trajetorias complexas que aparecem em muitos sistemas nao lineares, particularmente na ocorrencia de caos, a determinacao e a propria conceituacao de estabilidade e dos valores destes expoentes e mais um elusivo, ao ponto de criar dificuldades tecnicas. Este trabalho faz uma revisao didatica apresentando e explicando os conceitos de estabilidade e dos expoentes de Lyapunov, discutindo sua aplicacao na caracterizacao de sistemas dinamicos nao-lineares e propoe um estudo sobre as tecnicas de calculo destes expoentes. Para ilustar este estudo, analisamos alguns sistemas especificos, de Lorenz e Rossler, e discorremos sobre as propriedades que podem ser inferidas a partir do estudo realizado.
2017
Descripción
  • LIGIANNE NASCIMENTO BARROS
  • Técnica de programação semidefinida por arco viável e aplicação à maximização da frequência natural de estruturas mecânicas.
  • Fecha: 28-jul-2017
  • Hora: 10:00
  • Visualizar Disertación/Tesis   Mostrar Resumen
  • Neste trabalho, apresenta-se o problema programacao semidefinida, suas aplicacoes e condicoes de otimalidade. Neste trabalho se propoe uma nova tecnica de pontos interiores com arcos viaveis para o problema, nao convexos de programacao semidefinida. O problema de maximizacao da frequencia natural de estruturas e apresentado. Este problema e reescrito como um problema de programacao semidefinida nao convexo. Sao apresentados alguns testes numericos que comprovam a eficacia da nova tecnica quando aplicados ao problema de maximizacao da frequencia natural de estruturas.
  • MOISES FILGUEIRA DE OLIVEIRA
  • ESTUDO DO COMPORTAMENTO ANTROPOFÍLICO DE MOSQUITOS SELVAGENS E TRANSGÊNICOS BASEADO EM UM MODELO DE REAÇÃO-DIFUSÃO-QUIMIOTAXIA
  • Fecha: 31-mar-2017
  • Hora: 14:00
  • Visualizar Disertación/Tesis   Mostrar Resumen
  • As doencas transmitidas por mosquitos, como dengue, malaria, chikungunya, zika virus e febre amarela, tem sido tema relevante de estudos no meio academico- cientifico. Os numeros alarmantes relatados ano a ano no mundo colocam muitas dessas doencas em destaque. Tecnicas de manipulacao genetica, juntamente com metodos de prevencao, vacinas e medicamentos fornecem um conjunto de possi- bilidades que, se utilizadas de forma correta, podem reduzir consideravelmente a incidencia de muitas doencas. A avaliacao das medidas de prevencao e combate a doencas precisa ser feita, inicialmente, atraves de simulacoes de modelos matematicos e computacionais para posterior aplicacao pratica, a fim de garantir seguranca, economia e viabilidade. Neste trabalho, propomos um modelo descrito por um sistema de equacoes diferenciais do tipo reacao-difusao-quimiotaxia que descreve o espalhamento e a interacao entre mosquitos selvagens e transgenicos, onde a populacao transgenica tem capacidade reduzida de deteccao de CO2 , o que dificulta sua orientacao para o repasto sanguineo e, por consequencia reduz a taxa de picada em humanos. O modelo foi resolvido numericamente utilizando a tecnica de decomposicao de operadores sequencial, com a parte reativa do sistema resolvida pelo metodo Runge-kutta de quarta ordem e a parte difusiva-quimiotatica pelo metodo de Crank-Nicolson. As simulacoes numericas obtidas atestaram a consistencia do modelo com as premissas adotadas. modelo matematico, mosquitos transgenicos, reacao-difusao- quimiotaxia, decomposicao de operadores
2016
Descripción
  • JOSENILDO SILVA DE LIMA
  • Modelagem da interação entre mosquitos selvagens e transgênicos
  • Fecha: 16-dic-2016
  • Hora: 10:00
  • Visualizar Disertación/Tesis   Mostrar Resumen
  • Nesse trabalho sera considerado um modelo matematico que descreve a interacao entre mosquitos selvagens e transgenicos, levando em conta a zigosidade. Esse modelo e descrito por um sistema de equacoes diferenciais do tipo reacao-difusao, cujo termo de reacao e nao-linear. A solucao numerica do modelo e obtido utilizando a tecnica de decomposicao de operadores, onde a parte reativa e resolvida pelo metodo Runge-kutta de quarta ordem e a parte difusiva pelo metodo de Galerkin.
  • NATANAILZA MARTINS ALVES
  • CONSTRUÇÃO E ANÁLISE DAS REDES DE COAUTORIA EM PROGRAMAS DE PÓS-GRADUAÇÃO EM MODELAGEM MATEMÁTICA SOB A ÓTICA DE REDES COMPLEXAS
  • Fecha: 29-nov-2016
  • Hora: 14:00
  • Visualizar Disertación/Tesis   Mostrar Resumen
  • Apresenta-se, nesta tese, um estudo sobre a difusao do conhecimento em modelagem matematica no Brasil. Para tanto, exploramos as redes de coautoria dos Programas de Pos-Graduacao em Modelagem Matematica, com perl de modelagem, cadastrados na Sociedade Brasileira de Matematica Aplicada e Computacional (SBMAC). Apresentamos uma breve revisao sobre teoria dos grafos, redes sociais e redes complexas, como conceitos basicos que constituem o alicerce teorico do trabalho presente. Em seguida, reproduzimos a construcao e analise de redes de coautoria em periodicos de educacao matematica, para fundamentar a viabilidade do trabalho. Finalmente, construimos e analisamos as redes de coautoria em programas de PosGraduacao em Modelagem Matematica, atraves da exploracao de dados academicos pelos curriculos Lattes, registrado no CNPq (orgao gorvenamental brasileiro).
  • MARIA REJANE CORREIA RAMOS
  • APLICAÇÕES DO MÉTODO DAS SOLUÇÕES FUNDAMENTAIS EM PROBLEMAS DE DIFUSÃO
  • Fecha: 28-nov-2016
  • Hora: 14:00
  • Visualizar Disertación/Tesis   Mostrar Resumen
  • Apresenta-se, nesta dissertacao, uma formulacao nova e geral para um modelo de difusao com retencao, recentemente introduzida por Bevilacqua et al., onde a equacao resultante e uma equacao diferencial parcial (PDE - partial dierential equation) de quarta ordem. Alem disso, o termo de retencao esta associado ao termo de ordem superior da PDE, podendo ser interpretado como uma pequena perturbacao singular de um fenomeno de difusao pura, levando-se em conta as diferentes ordens de grandeza nos respectivos parametros, como geralmente e observado nos dados experimentais. Esta abordagem possibilitou a proposta de uma expansao assintotica para a PDE de quarta ordem, onde obtemos tres termos acoplados (de difusao pura) mais um pequeno termo remanescente, que pode ser desprezado, permitindo aproximar a solucao numerica da difusao anomala espacial por um metodo de solucoes fundamentais do tipo Kansa (KMFS), considerando-se a solucao fundamental do operador de difusao. Em particular, neste trabalho serao apresentados alguns resultados numericos da aplicacao do MFS em problemas de difusao onde realizaremos uma analise de sensibilidade de seus parametros, o que nos auxiliara na discussao da viabilidade da metodologia ora proposta.
  • MOISÉS VIANA FELIPE DE OLIVEIRA
  • O Método das Soluções Fundamentais com Expansão em Multipolos
  • Fecha: 20-oct-2016
  • Hora: 18:00
  • Visualizar Disertación/Tesis   Mostrar Resumen
  • Neste trabalho faremos uma resenha do estado da arte dos algoritmos propostos na literatura para o problema dos N-corpos, que tem como objetivo a reducao da complexidade computacional da simulacao da interacao entre N particulas. De fato, para um sistema com N particulas, cujas interacoes do tipo Coulomb ou gravitacionais, o custo computacional e da ordem de N^2, o que torna-se proibitivo para algumas aplicacoes de interesse onde N e grande, como encontrados na fisica de plasma, dinamica dos fluidos, dinamica Molecular, mecanica celeste, dentre outros. Em particular, vamos propor uma aplicacao do Metodo dos Multipolos rapidos na solucao do sistema algebrico gerado pelo metodo de solucoes fundamentais do tipo Kansa para a solucao numerica de equacoes diferenciais.
  • MARIA APARECIDA DE ANDRADE DA COSTA
  • Diagnósticos de Influência em Modelo de Regressão de Valor Extremo em Censura Tipo I
  • Fecha: 01-mar-2016
  • Hora: 17:00
  • Visualizar Disertación/Tesis   Mostrar Resumen
  • Neste trabalho, analisaremos o problema de avaliar a influência de observações no modelo de regressão de valor extremo sob censura tipo I. Tal modelo é bastante importante no estudo de dados de tempo de vida. Primeiramente obtemos a função log-verossimilhança, a função escore e a matriz de informação de Fisher. Em seguida, discutimos alguns métodos de influência, tais como a influência global e a influência local. Na análise de influência local derivamos as expressões para curvaturas normais sob diferentes esquemas de perturbações. Finalizaremos obtendo um expressão de forma fechada para a alavancagem generalizada.
  • SUELENA DE SOUZA ROCHA
  • Correção De Viés Do Modelo De Gumbel Com Censura Tipo I E Tipo II
  • Fecha: 01-mar-2016
  • Hora: 15:30
  • Visualizar Disertación/Tesis   Mostrar Resumen
  • Nesta dissertacao, utilizamos um modelo geral de regressao cuja variavel resposta segue distribuicao Gumbel. O modelo e geral, pois admite regressores tanto no parametro de locacao, quanto no parametro de escala. Alem disso, as relacoes entre os parametros e os regressores podem ser nao-lineares. Para tornar o trabalho mais abrangente, consideramos dois tipos de censura no modelo: censura tipo I e censura tipo II. Primeiramente, obtemos formulas explicitas, sob os dois tipos de censura, para a matriz de informacao de Fisher. Em seguida, obtemos os principais resultados desta dissertacao, a saber, aplicamos a metodologia de Cox e Snell (1969) para a obtencao de formulas explicitas para os vieses de primeira ordem dos estimadores de maxima verossimilhanca dos parametros de regressao do modelo. Ilustramos a utilidade das formulas atraves de simulacoes de Monte Carlo.
  • VICTOR JOSÉ ARAUJO DE CARVALHO
  • Análise de Influência para o Modelo de Regressão de Valor Extremo sob Censura do Tipo II
  • Fecha: 01-mar-2016
  • Hora: 14:00
  • Visualizar Disertación/Tesis   Mostrar Resumen
  • Neste trabalho, analisaremos o problema de avaliar a Influencia de observacoes no Modelo de Regressao de Valor Extremo sob Censura tipo II. Tal modelo e bastante importante no estudo de dados de tempo de vida. Primeiramente obteremos a funcao log-verossimilhanca, a funcao escore e a matriz de informacao. Em seguida discutiremos alguns metodos de influencia, tais como a influencia global e a influencia local. Na analise de influencia local derivaremos as expressoes para curvaturas normais sob diferentes esquemas de perturbacoes. Finalizaremos obtendo um expressao de forma fechada para a alavancagem generalizada.